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3. Interband Registration

3. INTERBAND REGISTRATION

James Theiler and Barham W. Smith

3.1 Introduction and Goal

Registration is the process of overlaying multiple images of the same scene, so that a position in
the scene corresponds to the same position in each of the images. Interband registration is crucial
for virtually any kind of retrieval that depends on the spectral signature of the desired quantity; this
includes vegetation, columnar water vapor, and surface water temperature. For the images
produced by the Multispectral Thermal Imager (MTT), several registration steps will be required.

» Comparison with ground truth will require precise “geolocation,” that is, direct registration
of the images with absolute position on the ground.

* For an application such as change detection, it is necessary to register images of the same
scene taken at different times.

* For a given overlook, the telescope will be maneuvered in orbit so that two separate views
are obtained, one near nadir, and one at a shallower angle. Since the two looks are through
different amounts of atmosphere, effects due to the atmosphere can be deduced (and
corrected) independent of external climate or weather knowledge. The robust water
temperature retrieval algorithm, for instance, is based on a linear fit to the TOA brightness
temperatures in the thermal bands as seen from two distinct look angles. However, the
perspective and field of view for the two looks will be quite different, and the registration
of images from these two views will be a challenge.

¢ Swaths of the three sensor chip assemblies (SCA’s) overlap by several pixels. This overlap
region will be used to register the images generated by the individual SCA’s.

¢ But a step that will precede all of these is the interband registration of images in each SCA.
It is this initial step that is discussed here.

The MTI instrument is a push-broom scanner; each SCA in the focal plane consists of several {one
for each spectral channel) single-pixel “stripes” of pixels that are scanned across the image
(actually, the lines are two pixels wide, but only one of the two pixels will be collecting data on
any given scene). The image is built up one row at a time as the SCA is pushed across the scene.
The sampling interval in the cross-track direction is determined by the pixel spacing on the focal
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plane, and the sampling interval in the along-track direction is determined by the ground-track
speed and the pixel readout rate. For near nadir looks, the ground sample distances (GSD’s) are
approximately 20 meters in the thermal bands, and 5 meters in the VIS/NIR bands. The
reconstruction of the scene requires that the motion of the imager be known very accurately; in
particular, any jitter in the scanning motion will degrade the image. (Although the term “jitter”
connotes high-frequency motion, we are using the term to mean any deviations from uniform
scanning motion.)

3.2 Scientific Basis

If this jitter can be measured (for instance, with accurate on-board gyroscopes or accelerometers),
then it can be accounted for in the image reconstruction; the problem basically reduces to an
interpolation. However we expect that external jitter measurements will not be sufficiently precise,
and we will need to infer information about motion of the FOV from the image data itself. This is
the “analysis” block in the figure below.

Original

|mga & Registration - Registered
9 (interpolation) image

Cubs Cube

Residual
Jitter
Estimate

)

4—@ *—[ Analysis

Figure 3-1. This figure emphasizes that registration requires jitter reconstruction and
interpolation. The interpolation is always on the original datacube to prevent successive
blurring.

For multichannel push-broom imagers, the individual stripes are physically separated on the focal
plane so that each channel “sees” a particular part of the scene at a different time. Although this
adds difficulty to the problem of registering the different channels to each other, it actually
provides information that can be exploited in reconstructing the unknown jitter in the scanning
motion, which can then be used for more accurate pixel registration and image reconstruction.

The basic idea is that there is cross-correlation between spectral channels. What's bright in the J
band is generally bright in the K band. In particular, one can cross-correlate one stripe of band J
with a stripe of band K at several different offsets, and take the offset that produced the maximum
cross-correlation as the best guess for the offset.

3.3 Algorithm Steps

In Theiler et al., 1997, we investigated two approaches based on cross-correlation for estimating
both the along-track and cross-track jitter. The first approach involved cross-correlations between
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each of the pairs of channels. The second method involved averaging all channels to make a
“baseline” image, and then cross-correlating each channel to that baseline. Although less accurate
than the pairwise method, the baseline approach is simpler and considerably faster. Finally, we
investigated a variant of the baseline method that computed an iterative cormection. Several
iterations of this approach were found to produce results comparable in accuracy to (and still faster
than) the pairwise method. Theoretical considerations (again, see Theiler et al., 1997) suggest that
the pairwise method is applicable over a wider range of conditions, but for the parameters of the
MTI satellite and focal plane, the iterative baseline approach seems entirely adequate.

The pairwise algorithm involves generating a large, but highly structured matrix; in fact, it is
banded, sparse, symmetric, positive semi-definite and approximately Toeplitz. This structure
permits an accelerated iterative solution of a matrix equation, but it is still much slower than the
baseline algorithm, which follows:

1) First, register the images in each channel as well as possible using nominal estimates of
tracking velocity, possibly augmented by the jitter information from the onboard
gyroscopes.

2) Create a baseline image by averaging the images in each channel.

3) Find the offset in both the along-track and cross-track directions that maximizes the
cross-correlation between each channel and the baseline. This will produce a for each
band an estimate of the jitter as a function of time.

4) Average these individual estimates of jitter to get an overall estimate of the jitter.

5} Add this residual jitter to the nominal jitter in step 1 to obtain a refined estimate of the
jitter.

6) Use interpolation to actually register the images.

The iterative baseline algorithm is a straightforward enhancement. The idea is to re-use the
estimated jitter from step 5 as the “nominal” jitter in step 1. The registration in step 1 is always
performed on the original image cube, so there is no successive blurring of the image cube. Steps 1
through 5 can be repeated until the residual jitter in step 4 is sufficiently small. Step 6 is only
performed once, at the very end, to obtain a registered image. However, as we have noted,
interband registration is just one of a series of registration steps that will need to be performed. To
avoid successive blurring effects, we will not use registered images as intermediate data products,
between the different registration steps. The most important data product for the interband
registration is the estimate of jitter as a function of time.

3.4 Error Budget

Simulations (shown in Figures 3-2 and 3-3; see Theiler ef al., 1997, for details) suggest that the
registration error can be made well below one pixel.

3.5 Validation

The registration algorithm can in principle be applied to any subset of spectral bands, though there
is a qualitative difference between the visible bands and the thermal bands. The visible bands have
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smaller pixels, but the thermal bands have more band-to-band correlation.
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Figure 3-2. Simulated jitter in the cross-track and along-track directions is estimated using
both the pairwise and the baseline algorithm. For this particular simulation, the cross-track
rms errors were 0.162 pixels (pairwise) and 0.276 pixels (baseline). The along-track rms
errors were 0.226 pixels (pairwise) and 0.475 pixels (baseline). Along-track jitter estimation
is in general less accurate than cross-track estimation.
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Figure 3-3. Iterating the baseline jitter estimation algorithm provides a considerable
improvement. In particular, the iterated baseline algorithm is comparable in accuracy to the
more expensive pairwise algorithm.
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Application of the algorithm separately to the visible bands and to the thermal bands will produce
two separate jitter estimates, the extent to which these estimates agree provides an indirect
measure of registration accuracy that can be performed without any ground truth.

Though the algorithm does not depend on particular features in the ground, some features can be
very helpful in assessing the accuracy to which the registration is performed. Scenes with long
straight lines are particularly useful in this regard: roads, channels, runways, parking lots, and city
blocks are among the features for which “straightness” on the registered image can be assessed.
Further assessment can be done if accurate maps of these features are available.

Another validation approach requires more active ground efforts. Isolated high-contrast GPS-
located targets can test not only the interband registration, but also the two look registration, and
even the full-up geolocation. At least two experiments of this kind should be performed, one on
flat terrain, and one where topography is a more serious consideration. One way to make the target
is to have a 20 meter square tarp (black, say) inside a 60 meter square tarp of contrasting color.
(The background tarp may not be necessary if the background seen is sufficiently uniform; eg, a
dry lake bed.) Because the inner tarp just fits into a pixel, it will generally map into four adjacent
pixels. But because the background is uniform, one can linearly decompose the amount of the
image that is in each pixel and locate it to a precision that is much less than the size of a pixel.
Because these are rather large tarps, an alternative approach would be to set up much smaller
mirrors which are aimed to reflect sunlight specularly into the satellite. If the reflected sunlight is
too bright, then it will affect the registration algorithm (will probably help it) in a way that does
not represent the behavior of the algorithm on typical scenes.

3.6 Software Implementation Concept

The software for both algorithms has been implemented in IDL and is part of the MTI Software
Repository. We would like to acknowledge the contributions of Bradley G. Henderson. Software
for the registration of the SCA’s to each other, and for registration of the two looks to each other,
has not been developed. The focal plane distortion map also remains to be integrated into this task.
This software will probably be based on standard techniques, such as those reviewed by Fonesca et
al., 1996. We note that this integration will require that jitter information be carried along with the
data. The actual interpolation will always be saved for last, avoiding unwarranted blurring in the
final image cube due to re-registration at intermediate stages.
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4. IMAGE RECONSTRUCTION AND
RESTORATION

Christoph C. Borel

4.1 Introduction and Goal

The purpose of image restoration is to correct the measured image for degrading effects resulting
from image blurring and additive noise. The blurring can be due to atmospheric turbulence,
scattering caused adjacency blurring, telescope point spread function, motion and jitter during
image acquisition, amplifier transfer function, electronic cross talk. The noise can be due to
thermal noise (Gaussian), photon or shot noise (Poisson), correlated noise (1/f noise), read-out
noise and quantization noise.

Image restoration will be used in MTI to improve water temperature estimates in the mid and long-
wave channels and improve material identification accuracy in the visible, near and short-wave
infrared. Image reconstruction attempts to improve the radiometric accuracy of the original data
using knowledge about the blurring process and noise. In some cases a visible channel can be used
to outline the water bodies and sharpen the images.

In summary the goals are to find methods to:

¢ Improve the image quality;

e Improve retrieved physical parameters such as water temperature;

¢ Improve material identification accuracy in the visible, near and short-wave infrared.
4.1.1 Image Reconstruction
We will not talk much about image reconstruction here and only state what additional steps are
involved. In the context of MTI, image reconstruction is the step which takes individual image
rows and places them such that they correspond to the 2-D scene observed by the telescope. To use
an analog from art preservation, reconstruction takes the broken pieces of a vase and glues them

together. Its algorithms are described in detail in the registration write-up and the write-up on
geolocation.
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However note that there will be residual blurring effects introduced by the interpolation step which
depend on the interpolator used (e.g. nearest neighbor, bi-linear, bi-cubic, quintic). Therefore it is
recommended to first perform an image restoration followed by the steps of image reconstruction.

4. 1.2 Image Restoration

Using an analog from art preservation, restoration takes off the dark varnish layers of a painting
and fills in cracks. A brief synopsis on image restoration can be found at:

http://web.eecs.nwu.edu/EXTERNAL/ivpl/other_rest.html

Restoration of single channel images is a relatively mature field, started back in the early 1970’s,
when digital computers were first making headway into the research laboratories across the
country. Since the publication of Digital Image Restoration by Andrews and Hunt in 1977,
restoration has been widely researched. The basic model for imaging is given by:

D=I*PSF+N 4-1)

where D is the observed (data) and / the original image, N is the additive random noise (i.e.
Gaussian or Poisson distributed), and PSF is the Point Spread Function. The discrete convolution
is defined as (Vérosi):

(1 * PSFXi, j) = 2, Ik, DPSF(i — k, j — ) -
k.l (4-2)

where (i,j) are image pixel indices and PSF is assumed to be centered at (0,0).

The problem of image restoration or deconvolution can now be mathematically stated as: Given D,
find a best estimate of I, according to some optimization criterion. Restoration algorithms differ
with respect to the amount of knowledge that is assumed known a priori . The simplest algorithms
assume PSF is known exactly, as well as the statistics of the noise, N. Under this condition inverse
filtering is a viable solution. However, in practice the degradation is often not well known,
although it can be estimated by a couple of different methods. For example, if the image is an
astronomical image, then the blur can be calculated by pointing the telescope at a star (point
source). The observed image will not be a point, due to the degradation. Instead, the point will be
blurry, which can then be used to estimate the degradation. In more general cases, different
algorithms have been proposed in the literature to estimate the Point Spread Function.
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4.2 Scientific Basis

Virosi and Landsman (1995) state:

“The objective of deconvolution is to reconstruct the image 7 given the data D, the PSF, and
knowledge of the noise V. In reality the image restoration problem has more unknown than
known quantities because of noise and instrument limitations. For this reason a unigue solution
does not exist, so it is necessary to consider the probabilities of solutions. The statistical
formulation of the deconvolution problem involves the use of Bayes' theorem to derive (see,
e.g., Weir 1991, PiOa and Puetter 1992)

p(Di1, M)p(1iM)
p(DIM) 4-3)

p(I|D,M)=

where p(/lD,M} is the probability of the restored image given the data and model M (e.g. eq. 1)
p(DILM) is the probability of the data for a given restored image and model. Assuming the
model is fixed, the term p(DIM) is independent of 7 so it is constant, and p(/IM) is the prior
probability of the image given the model. A solution to the deconvolution problem is obtained
by maximizing the probability of the restored image, and this can be accomplished by
maximizing p(DII, M), the ‘goodness of fit’, leading to ‘maximum likelihood’ methods. Also,
the product p(D,M} p(IIM) could be maximized, with p(lIM) = e’ and § e ‘entropy’ of I, then
leading to ‘maximum entropy' methods. Hence the Bayesian formulation leads to a variety of
algorithms for image restoration, each having its own statistics measure to be optimized in
order to reconstruct the image.”

4.3 Algorithm Steps

4. 3. 1 Image sharpening for water temperature refrieval
A simulation package has been written (C. Borel) which computes the radiance images for all 5
thermal channels at the focal plane of size n, in the across track direction and n, pixels in the
along-track direction.

1. Compute image of aperture (I pcrr.) for a wavelength A.

2. Compute telescope optical transfer function (OTF): OTF ietescope = FFT(Inperture)2.

3. Compute image of pixel (Ip;) at 10 times the resolution.

4. Compute pixel OTF: OTFpi = FFT (i),

5. Compute motion path in units of pixels as sum of linear motion and jitter: {x(z),y(¢)] = [0.,¢/T]
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+ [Xjiner D), Yjiner(1)), t = 0,...,T, where the jitter is computed using estimated power-spectra for
x/y translations.

6. Compute Motion OTF: OTF pion= FFT (6 (x.3)), where & () is the delta function.
7. Compute telescope+motion+focal plane OTF : OTFsysiem = OTF tetescope OTFpizet OTF mation.

8. Compute scene image: Dyp= FFT 1FFT (B(A, T(x,y))YOTF sy51.m), where T(x,y) is a simulated
temperature distribution and B() is the Planck function.

9. Re-sample filtered image to 50 um pixels: D;=lrebin(Djo,n/10,n,/10)l, where rebin is an
IDL® function to generate a new image by averaging 10 by 10 pixels.

10. Add noise: D1 = D\+N[o = B(4;,273.15°K)/SNR], where SNR is the signal-to-noise ratio.

11. Compute PSF at a spacing of one pixel: PSF = Irebin[FFT"! (OTF ystem),m/10,m,/10]| and
normalize: PSF = PSF/total(PSF), where m, and m, are the size of the oversampied PSF
(typically m, = m,=150).

12. Run Maximum Entropy filter N times using PSF as known point spread function (or other
image restoration methods) to compute an estimate of the radiance L,.(x,y) which minimizes
the degradations (blurring and noise).

13. Convert the restored image to a brightness temperature map: TA(x,y) = B, L, (x.y)).

14. Compute the water temperature Test with the robust linear fitting procedure (Tornow et al,
1994):

€3

T,=T + 2 a,T,(nadir) + b,T,(60deg)
: 44

or with a physics-based retrieval method based on spectral smoothness (Borel, 1997).

15. Compute error statistics: €7 = o(T(x,y) - Tosr (x,¥)).

4. 3. 2 Image restoration for correlated noise

In the case of correlated noise (1/f noise) we developed an iterative algorithm to suppress the
correlated noise while preserving the scene information (Borel, Cooke and Laubscher, 1996).
Correlated noise occurs in many imaging systems such as scanners and push-broom imagers. The
sources of correlated noise can be from the detectors, pre-amplifiers and sampling circuits.
Correlated noise appears as streaking along the scan direction of a scanner or in the along track
direction of a push-broom imager. We have developed algorithms to simulate correlated noise and
pre-filter to reduce the amount of streaking while not destroying the scene content.
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The pre-filter in the Fourier domain consists of the product of two filters. One filter whitens the
correlated noise spectrum, the other is a low-pass filter function e.g. Gaussian or Hanning window
with variable width to block high frequency noise away from the origin of the Fourier Transform
of the image data. We have optimized the filter parameters for various scenes and find
improvements of the RMS error of the original minus the pre-filtered noisy image.

4. 3. 3 Image blurring due to adjacency effect

Although the adjacency effect can be considered a type of atmospheric correction, we include it
here because compensation for it follows roughly the same methodology as previous deblurring
effects.

In the visible and near infrared the atmosphere causes additional blurring due to scattering of light
from adjacent surface elements into the line of sight. The amount of adjacency blurring depends on
the aerosol loading of the atmosphere and the albedo bidirectional reflectance distribution function
(BRDF) of the adjacent surface. We developed a method to estimate the adjacency effect using the
extended radiosity method (Borel and Gerstl, 1992a, 1992b) taking the surface BRDF and height
dependent aerosol scattering phase functions into account. The resulting cover dependent PSF's
can be used to realistically simulate top of the atmosphere radiances for artificial scenes.

When images of heterogeneous land surfaces are acquired through the atmosphere, the measured
radiance data include not only the surface radiances per pixel but also contain modifications due to
the atmosphere. Correcting such modified land imagery for atmospheric effects, one must consider
atmospheric absorption as well as scattering. The atmospheric scattering gives rise to a blurring
effect of adjacent pixels. The adjacency-blurring-effect is most noticeably observed at the
boundary between a dark and a bright surface. Near the edge over a dark surface photons from the
nearby bright surface may be scattered within the atmosphere into the field of view (FOV) of an
airborne or satellite sensor. Conversely, near the edge over a bright surface fewer photons reach
the sensor’s FOV. At a discontinuity in the surface reflectance, the intensity transect in a satellite
image appears therefore as the sum of a step and a sigmoid-shaped function. This blurring effect is
most often observed at boundaries between surfaces with a large contrast ratio such as water and
land in the visible, and has been described in the literature by Diner (1985), Kaufman (1984),
Richter (1990), Pearce (1977), Tanré (1980) and others.

The adjacency-blurring-effect may introduce errors in the classification of small bright areas
surrounded by a dark region, or dark areas on a bright background (Kaufman (1984)).

It is difficult to correct for the adjacency effect in practice but we hope to measure and document
the effect with MTI data. There is also a potential to use the adjacency PSF as a way to
characterize the aerosol parameters given a known ground reflectance field.

4. 3. 4 Image blurring in the visible, near and short-wave infrared due to cirrus clouds

Since cirrus clouds scatter in the visible, near and short-wave infrared image blurring will occur. It
is not certain how imagery with cirrus clouds present can be sharpened. Discussions with Bo-Cai
Gao indicate that it might be possible to use the cirrus channel at 1.37 um to estimate the scattering
in other channels and then correct for it. No attempts have been made to calculate the PSF of cirrus
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for image sharpening of cirrus contaminated scenes. See Section 12 for more information on cirrus
and Section 13 for aerosol correction.

4. 3. 5 Image blurring in the thermal infrared due to cirrus clouds

If thin cirrus are present the blurring in the thermal could be significant and we need to further
investigate how much blurring results and to develop methods to correct the blurring from cirrus.

4. 3. 6 Blurring due to atmospheric turbulence

The blurring due to atmospheric turbulence has been estimated to be not important at the 5 m and
20 m GSD.

4. 3.7 Veiling glare correction

A fraction of the light observed at the focal plane is due to scattered light from outside of the field
of view. Bright objects like clouds could cause an additional radiance offset in each channel which
would not be corrected by atmospheric corrections and basic image restoration methods. Using
con-temporal imagery from a weather satellite (e.g. Goes, Meteosat) and laboratory data for the
veiling glare it should be possible to estimate a radiance offset due to veiling glare for MTI
imagery.

4.4 Error Budget

4. 4.1 Water temperature error estimates

The error resulting from using various image restoration methods has been computed in the case of
water temperature retrievals for various artificial scenes. The error depends on the scene
complexity. For scenes with large uniform water bodies there are almost no improvements visible
between unrestored and restored temperature maps. For high-temperature gradients and highly
structured scenes there is a substantial improvement - often a factor of two - when an image
restoration algorithm is used. A detailed error budget can be worked out on a case-by-case basis
for MTI imagery using the algorithms out-lined above.

4. 4.2 Material identification improvement estimates

Not done for MTI. Work by Gray (1986) indicates an improvement in classification accuracy.

4.5 Validation Plan
The image restoration algorithms can be validated using two sources of data from the sensor:

-« The ground measurements using artificial targets projected into the MTI telescope together
with detailed measurements of the modulation transfer function (MTF).

¢ Space-based measurements by MTI over resolution targets and of bright stars.
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* Space-based measurements by MTI over targets with known reflectances and fractions to test
material identification.

4.6 Software Implementation Concept

The following image restoration methods have been implemented:
* Maximum Entropy (Vérosi)
» Maximum Likelihood (V4rosi)
¢ Maximum Residual Likelihood (Vérosi)
* Goodness of Fit (Puetter)
» Weighted Goodness of Fit (Puetter)
¢ Pixon (Puetter)
e Jterative Wiener Filtering (Borel)
As an example, iterative Wiener filtering is an algorithm that works quickly and well to improve

the water temperature retrieval. The steps for this algorithm are:

L.fo=wD
2.fiz=fia+ @(D-fi* PSF), k=1,.N
where f; are the iterative estimates of the original image I and @ (> 0) is selected so that

- o MTFl < 1,
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5. PHYSICS-BASED WATER AND LAND
TEMPERATURE RETRIEVAL

Christoph C. Borel and John J. Szymanski

5.1 Introduction and Goal

Currently we have a well-documented and robust algorithm to retrieve water
temperatures (see Section 6). The robust algorithm uses a linear fit to measured top-of-
the-atmosphere (TOA) brightness temperatures for nadir and off-nadir (60 degrees)
looks. Unfortunately the algorithm is complex to use since a large set of atmospheric
cases must be run to come up with the linear fitting coefficients. The robust water
temperature algorithm is also not able currently to retrieve land surface temperatures,
since it does not explicitly include the surface emissivity, although it could be modified
to do so.

Thus we decided to work on a new algorithm to retrieve not only water temperatures but
also land surface temperatures. Recently we presented work on an algorithm to retrieve
surface temperature and emissivity for a hyper-spectral imager in the long-wave infrared
(see C. Borel, 1997). We found that we could apply the main idea of the algorithm to the
multi-spectral case as well. Having a physics-based algorithm will provide us with
another method which can be compared to the robust water temperature retrievals.

5.2 Scientific Basis

5.2.1 Water surface temperature retrieval

The central problem of temperature-emissivity separation is, as pointed out by Realmuto,
1990, that we obtain N spectral measurements of radiance and need to find N+1
unknowns (N emissivities and one temperature). To solve this problem in the presence of
the atmosphere we need to find even more unknowns: N spectral transmissions T,_ (A ), N
up-welling path radiances L,,t(1) and N down-welling path radiances L. A4).
Fortunately there are radiative transfer codes such as MODTRAN 3 and FASCODE
available to get good estimates of 7,,,(A), L,,1(4) and L_,1(4 ) on the order of a few
percent.

The presently-used methods for multi-spectral sensors such as TIMS, ASTER, etc. are
based on assumptions of having a certain emissivity & at a wavelength A, (Kahle et al.,
1980), fixing the maximum expected emissivity to a certain value (Realmuto, 1990),
assuming a linear relationship between mean emissivity and maximum difference for
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rocks and soils (Matsunaga, 1993) and approximating the Planck function using Wien's
law and working with residuals (temperature and alpha) (Hook et al, 1992).

Qur algorithm varies the columnar water vapor and atmospheric temperature over a small
range of surface temperatures until the retrieved surface temperature is the same for all
spectral channels while matching the measured radiances. We found that while the
atmospheric temperature and columnar water vapor may be in error to actual values used
in MODTRAN the retrieved surface temperature is actually very close to the truth. Thus
the method should not be used to retrieve atmospheric parameters.

The algorithm was tested on synthetic data using spline fits to many MODTRAN runs
and a independently-derived nonlinear model for the atmospheric transmission based on
work by J. Johnson and W. Clodius, 1995. For now we use a simple emissivity model for
water.

5. 2. 2 Land surface temperature retrieval

The above algorithm has not been tested yet for land surfaces. We imagine that it will be
necessary to combine a material identification algorithmn using the NIR and SWIR
channels and estimate the material emissivity in the thermal channels and then run the
same algorithm to determine water temperatures with a new emissivity.

Alternatively we will compare our algorithm to TES algorithms used for ASTER.

5.3 Algorithm Steps

The main idea is that the atmospherically-corrected surface temperature should be the
same in all MTI thermal channels. The measured radiance for channel i is given as:

L= £, B(T;) T(CW) + B(T)[1- TACW) ] -1)

where £, is the ground emissivity, B(T,) is the band-averaged Planck function for band i
with the subscripts g indicating ground and a indicating the atmosphere. The columnar-
water-vapor dependent transmission is written as T,(CW).

Solving eq.(5-1) for the estimated ground temperature (T, ) for the i-th channel:

L. - BT, X1-T(CW)1
£, T(CW)

. [
T = B_ll_
{5-2)
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where B[] indicates the inverse band-averaged Planck function. Known quantities are
the measured radiance at the sensor L, and the surface emissivity £,,; the unknowns are
the effective atmospheric temperature T, and the columnar water vapor CW.

We found (J. Johnson and W. Clodius, 1995) that the following equation is a very good
approximation for the band-averaged atmospheric transmission T,(CW):

T(CW)= exp[—( 4 ) + B,.( W )c, ]]

cos cosf

(3-3)

where A, B, and C, are fitting parameters obtained by varying the columnar water vapor
for nadir © =0° and off-nadir 6 =60° looks.

Table 1. Fitting Coefficients

Channel i A; B; G

J 0.0753401 0.0691721 0.855049
K 0.0418199 | 0.778816 0.666231
L 0.121604 0.304723 0.768838
M 0.0479972 | 0.158434 0.836417
N 0.0223214 | 0.0731050 1.39088

The algorithm consists of varying the columnar water vapor and atmospheric temperature

over a small range of surface temperatures until the retrieved surface temperature T, is
the same for all spectral channels i, while matching the measured radiances L _,.

5.4 Error Budget

Needs to worked out in detail - indications are that the temperature accuracy is very good
(i.e., < 1K for most atmospheric cases).

5.5 Validation Plan
See Section 6, following,

5.6 Software Implementation Concept

Simulation program exists called smoothall.pro which computes the temperature error as
a function of water vapor and atmospheric temperature.
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6. ROBUST WATER TEMPERATURE
RETRIEVAL

James Theiler, Christoph C. Borel, and Pawel Smolarkiewicz

6.1 Introduction and Goal

Temperature retrievals over water surfaces are simplified by the near-blackbody radiance of
water in the thermal IR bands, but complicated by atmospheric conditions (water vapor, cirrus
clouds, aerosols, etc.) through which the surface is viewed. In the absence of atmospheric effects,
one could compute water temperature using any one of the MTI thermal channels (J,K,L,M,N),
and the algorithm would have only two steps:

1. Divide radiance by known emissivity of water in the desired waveband;
2. Convert this radiance to temperature using the Planck blackbody formula.

If the atmospheric conditions are known, their effects can be modeled, (e.g., with MODTRAN
(Berk, 1989)), and a corrected estimate of water surface temperature is possible, again from any
one of the MTI thermal IR channels. The “robust” water temperature retrieval algorithm does
not assume that atmospheric conditions are known, but it takes advantage of the fact that
radiances are measured in five different spectral bands; it also exploits the two looks that the
MTI satellite makes in a given pass over a target. The algorithm used for MTI is a variant of
Barton’s method (Barton 1989) developed by Tornow et al. (Tormow and Borel 1994, and
Tornow et al. 1994). It estimates the water surface temperature without using external
information about the atmosphere, and (in simulations) it provides a reasonably accurate
approximation over a wide variety of atmospheric conditions.

6.2 Scientific Basis

Figure 6-1 identifies three components contributing to the TOA radiance which is finally
measured by the satellite. Since the atmospheric effects are different in different spectral
channels, and vary with the amount of atmosphere through which the scene is being viewed, it is
in principle possible to infer information about the atmosphere from the collection of individual
measurements of TOA brightness temperature in the different thermal channels and different
look angles. It is difficult to directly infer atmospheric properties from these variations, but the
“robust” approach sidesteps this difficulty by combining these individual measurements to
provide an estimate which is relatively insensitive to atmospheric variations. The final estimate
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FIGURE 6-1. Three components are identified as contributing to the TOA radiance. 1) is the
radiance from the surface; this the quantity we most care about since it contains information
about the surface temperature. 2) is upwelling radiation from the atmosphere, and 3) is reflected
downwelling radiation. All three of these contributions are attenuated by the atmsophere.

is the linear combination of the individual TOA brightness temperature measurements that best
fits the actual surface temperature over a variety of atmospheric conditions. The front-end of the
approach is to model the radiation transport through a variety of atmospheres. For each channel,
and for each of two look angles, the TOA brightness temperature is computed as a function of
surface water temperature. These functions, one for each atmospheric model and look angle,
constitute a “database” of surface temperatures and corresponding TOA brightness temperature
tneasurements.

Note that we assume a plane parallel atmosphere, in which the viewing paths through both look
angles pass through the same atmospheric structure at different angles. In the daytime, MTI can
check this assumption by direct measurement of the water vapor column along each path, since
the variability of water vapor is the major factor in variability of path radiance and absorption. At
night, however, we have no check.

A sticky point here is the combinatorial explosion of possible modeis to run. One wants the
database to span a range of water vapor levels, acrosol quantities, and aerosol types, to include
various thicknesses of cirrus clouds, and to cover an adequate range of ground temperatures. In
Tornow and Borel (1994), an approximation is described for obtaining TOA radiances as a
function of ground surface temperature, giver a model] prediction at a fiducial ground surface
temperature. The basic idea involves defining an “effective transmittance” for a given spectral
channel which depends very weakly on ground temperature, and then approximating it by its
value at the fiducial temperature. Since the only other temperature dependence in the model
comes from the black-body radiance, this can be calculated after the MODTRAN runs. Thus,
only one MODTRAN run is needed for each atmospheric model. Given the possible
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combinations of water vapors, aerosols, efc., this can still be quite large, but this approximation
reduces the job from tens of thousands of runs to a few hundred. This a large number of
MODTRAN runs, but fortunately it is not necessary to make a separate run for each ground
temperature.

The back-end of this method attempts to invert the mode! by linear regression of the water
surface temperatures to the corresponding TOA brightness temperatures,

Although water is a near-blackbody (in other words, emissivity is near one) in the thermal
regime, the robust water temperature retrieval algorithm only depends on the fact that its
emissivity is known. Land temperature retrieval can use the same robust algorithm as long as the
emissivity of the ground can be determined or estimated. This may be possible by using other
bands for material identification, and then using a database of material spectral properties in the
infrared.

6.3 Algorithm Steps

480 Atmospheric Models [~ s
Radlance
Database
5 Bands x 2 Lookangles [——#» — Extended
TOA Radiance
Known surface emissivity - Database
55 ground temperatures
Surface Temperature Multispectral
Retrieval Algorithm | Coefficients Regression

Figure 6-2. Database approach to temperature retrieval. The intermediate radiance database
contains information on atmospheric transmission, upwelling radiance, and reflected
downwelling radiance for a wide range of atmospheric conditions, as seen in the five thermal
bands at two different lookangles. Generating the intermediate database involves a large number
of MODTRAN runs. From these intermediate values, the final TOA radiance for a given ground
emissivity and and ground temperature can be quickly computed (without recourse to
MODTRAN). An extended radiance database can then be built with TOA radiances (or,
equivalently, TOA brightness temperatures) in each of the ten band/angle combinations over a
wide range of ground temperatures. Using linear regression, coefficients are found which
optimally fit the ground temperature as a function of TOA brightness temperatures. These
coefficients comprise the robust water temperature retrieval algorithm.
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The retrieval algorithm itself is actually quite trivial, it is a set of coefficients which are applied
to the TOA brightness temperatures to produce an estimated ground temperature. To obtain these
coefficients, we use a database approach as shown in Figure 6-1. The algorithm is explained in
more detail in Tornow and Borel (1994), Tornow et al. (1994) and Theiler {(1995), but an overall
outline follows:

1)

2)

3)

4)

5)

6)

7

8)

Choose a set of atmospheres to model. In the current implementation, these include
twenty different water vapor levels, varying from a sub-arctic 0.09 g/cm’® to a tropical
4.2g/cm’; three types of aerosol (urban, rural, and tropospheric); and eight atmospheric
states (without and with volcanic aerosol, without and with varying thicknesses and
altitudes of cirrus clouds). There are a total of 480 different atmospheres.

Compute (or look up) the emissivity of water; this value will depend on look-angle and
on wind velocity, since wind roughens the surface. We use a Cox-Munk (Cox and
Munk, 1954) model to estimate the effect of wind-roughening. See also Theiler and
Henderson (1997), and Henderson et al. (1997).

Prepare the MODTRAN input decks for each of the atmospheric models. This is mostly
a matter of bookkeeping, but a MODTRAN input deck contains a lot of information in a
compact (and rather cryptic) format.

Run MODTRAN on each atmosphere for the five MTI thermal channels and at least two
look-angles, but at a single fiducial temperature, usuvally 300°K, and create an
intermediate radiance database. This database includes not only the TOA radiances, but
also surface emissivity, upwelling and reflected downwelling radiances as well as the
effective transmittance.

[Optional] From the intermediate radiance database, one may want to interpolate look-
angles so as to accommodate specific angles for a given two-look maneuver.

Extend the radiance database to a range of temperatures using the effective-transmittance
approximation.

Convert TOA radiance to TOA brightness temperature.

Perform the linear regression to invert the model.

One obtains from these steps a set of regression coefficients. These coefficients can then be used
for conversion of TOA radiance measurements back to surface temperatures.

The typical data flow for this product is illustrated by Figure 6-3 for one- and two-look data
analyses respectively. Algorithins implementing image enhanced water temperature retrievals
will generate the data sets Level 2-WST-a-MEM and Level 2-WST-a-Pixon, which rely on
Maximum Entropy and Pixon image enhancement techniques, respectively.
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Figure 6-3. Water temperature retrieval data flow (two looks).

6.4 Validation Plan

In the end-to-end modeling, these retrieved surface temperatures are then compared to the
temperatures used in the simulation, and this provides an estimate of the emror due to modeling.
The simulations also add noise (of two different kinds) in each of the spectral channels, and can
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estimate the effect of signal to noise ratio in a given spectral channel on the final retrieved
temperature.

The end-to-end model not only provides a way to estimate the error of the system as configured,
it also permits the exploration of “what if” questions. It was used for instance in a trade study
involving the spectral window for band N. Originally, this window was designed to be 10.2-11.5
pm, but we learmned that the extra expense in taking the response to such a long wavelength
would be considerable. We were able to show nearly identical temperature retrieval performance
using a narrower 10.2-10.7 um window, and thus argue in favor of the money-saving trade.

Direct validation will require temperature retrieval of a lake or pond for which ground estimates
are available. Retrieving temperature gradients is also imporant, and a power plant with a nearby
cooling river or cooling estuary will be useful. Local weather information should also be
available, though it needen't be precise: overall air temperature and humidity are most important.
Local wind speed should also be measured, since this affects the water surface roughness and
therefore its emissivity. It is important that experiments be performed over a range of weather
conditions to assess whether the algorithm really is robust to those changes.

This algorithm works in principle on any surface for which the surface emissivity is known, A
large and relatively uniform expanse of any well-characterized surface would provide an
interesting test of this algorithm in a different regime. Although parking lots, lava flows, coal
fields, large plant canopies, and ploughed fields have been suggested for this, it will probably be
difficult to achieve a uniform and well-characterized emissivity and/or temperature for any of
these.

We would aim for 0.2°C temperature estimation, so that the accuracy could be accurately
assessed, but even half-degree ground accuracy would be useful.

6.5 Error Budget

Simulations indicate that the surface temperature can be retrieved high absolute accuracy using
the five MTI thermal channeis at their nominal SNR performance, and taking both a nadir look
and a sixty-degrees off-nadir second look. Again, more detailed results are reported in the
references (Tornow and Borel, Tornow et al., 1994).

6.6 Software Implementation

The MTI temperature retrieval algorithms are implemented with a combination of per! and IDL
scripts which set up the input for and further process the output from a large FORTRAN routine
(MODTRAN) that simulates atmospheric transmission of radiation. There is also a Tk/Tel script
(tktrp) which acts as a graphical front end to the entire pipeline. These are maintained in a
software repository (see Theiler 1995). MODTRAN is the main workhorse of the temperature
retrieval effort. The version we use has been modified so that it outputs not only the total top of
atmosphere (TOA) radiance, but the contributions to that radiance due to surface emission,
atmospheric upwelling emission, and reflected atmospheric downwelling emission. Using these
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individual contributions permits us to extrapolate TOA radiance for a wide range of ground
temperatures, from MODTRAN output computed with a single fiducial ground temperature.

The front-end of the pipeline involves generating a database of TOA radiances in our five
thermal channels (J, K, L, M, and N) for a range of ground temperatures, a variety of atmospheric
conditions, and for several different look angles.

The back-end attempts to “fit” this database to some kind of regression, providing coefficients
for later use, and then quantifies the error between the fit and the database. We are interested not
only in how well the fit matches the database, but also in how well a fit applied to noisy TOA
radiances matches the database. Finally, the function rad_to_temp uses the coefficients
generated in the back-end fit, and converts a set of TOA radiances into a best guess at the ground
temperature.

We acknowledge the original work by Carmen Tornow to implement this algorithm.

Fig. 6-4 shows an overview of the main pipeline in its current implementation. More details can
be found in the software write-up. (Theiler, 1995)

tktrp (Tcl/Tk script)

modtranlnput.pl |

Pl

ﬁiltcr.flt modtrn+1.f i

*0000.mod *6000.mod

meanspec.pro

(angint.pro)

extgtmp.pro |

S~
~d

invtmp.pro

rad_to_temp,pro ..q\

Figure 6-4;: Temperature retrieval pipeline, in its current implementation. The * .min files are
MODTRAN input decks (the filename encodes information about lock angle and atmosphere
type); the *.mod files are MODTRAN output. The *.ird file is an intermediate radiance
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database, and the * . erd file is an extended radiance database. The £ilter. f1t file contains
information about the filter functions for the individual bands; in the production routine, this
information will be managed by *.pan files. The six components in the front-end are run from
a single Tcl/Tk script which provides a graphical user interface. The front-end of the pipeline
produces the coefficients that are used in the back-end IDL script that converts TOA radiances to
ground temperatures.
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7. DETECTING BODIES OF WATER

John J. Szymanski and Christoph C. Borel

7.1 Introduction and Goal

Before water-temperature retrievals are performed it is necessary to identify pixels that are
predominantly water and therefore produce a water map. Of course, a priori knowledge of water
bodies from independent topographic information and/or previous MTI images will be used when
available and deemed accurate. In the present conception of this algorithm, water maps are
produced from the near-infrared band D (0.76 to 0.86 microns), which has a 5 m ground-sample
distance (GSD), versus the 20 m GSD of the thermal infrared (TIR) bands. Two approaches will
be outlined in this paper, one that involves active modeling of the atmosphere and water surface
and another that requires more interaction and relies on a statistical sampling of surface
reflectance. Both use the visible bands.

7.2 Scientific Basis

The reflectance of water in band D is very low, with a residual dependence on the level of “yellow
gunk” (i.e., soil and other sediments) and chlorophyll (see Fig. 7-1). Band D is located just past
the vegetative “red edge,” and water is essentially black in this band. Other materials, such as
asphalt, can also appear black in band D. So, it may prove necessary to use the green band (B) to
sense the presence of chlorophyll and, therefore, differentiate other “black™ pixels from water
pixels. See Section 16 on water quality. One could also use the NDVI as a counter-indicator, i.e.,
water has a low NDVI. Essentially, any of the VIS-NIR bands (A-D) will have low refiectance for
water, with the possible exception of band B as noted above. Detailed evaluation of the algorithm
performance will reveal the gains obtained using bands A-C, and these bands will be used in
addition to band D where appropriate in the algorithm outlined below.

Wind speed, angle of incidence, and angle of detection all affect the reflectance of water. Also,
atmospheric transmission and scattering affect the radiance detected in band D. Following

Hamilton et al. (1993) and Carder et al. {1993), we can model the atmospheric transmission,
angular, and atmospheric-scattering effects and derive the water-leaving radiance, Lw

L, = (LI'OA - Lpalh - Lsh‘prm)lrarm ! -1
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where Ltoa is the measured radiance at the top-of-the-atmosphere, Lpath is the radiance scattered
into MTI along the path, Lsky is the radiance looking up from the surface into space, p is the

Fresnel reflectance of water, and Taim is atmospheric transmission. The last term represents the
irradiance from the sky in a random direction that is reflected back into MTL. A MODTRAN
simulation provides the needed atmospheric correction factors using atmospheric precipitable
water as an input {as determined by the water vapor retrieval algorithm). Finally, the reflectance is
determined by the relation

Reflectance =L/ o

where Linc is the incident solar irradiance, corrected for atmospheric transmission.

Reflectance of Clear Lake Water
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FIGURE 7-1. Reflectance for clean lake water. Note that in the region of Band D (0.76 to
0.86 microns) the reflectance is particularly low.
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7.3 Algorithm Steps

A simple threshold applied to the atmosphere-corrected reflectance tags water pixels (with
reflectance less than the threshold indicating water). If the wind speed is known, then the threshold
can be modified with input from a wind-speed-dependent water reflectance model such as the
Cox-Munk model (Cox and Munk, 1954). Different chlorophyll concentrations can also be added
to 6S simulations of the water reflectance.

After the first-order water map is produced from band D (A-D), the low-resolution bands can be
checked for consistency in the water-identified pixels. In other words, if a pixel is identified as
being water, the VNIR and SWIR bands should have reflectances consistent with water,

The threshold can also be determined from the statistics of the scene itself by histogramming the
band D reflectance or producing scatterplots of two VIS-NIR reflectances. Indeed, it may be
possible to work with top-of-the atmosphere radiances, using a histogram to set the appropriate
threshold to differentiate water pixels from the remainder of the scene. This approach would work
if atmospheric corrections are similar across the scene, an assumption that is likely to be true for
MTI images. This approach needs input from a data analyst to properly set the threshold by
studying reflectance or radiance distributions. If available, independent topographic data can also
guide the analyst in setting the threshold by identifying known water pixels.

Band A-D
images from Band- Sun & Other data
dependent look anales e.g. previous
Level 1B-RB thresholds g images
data set

e T S

i Band A-D [ AEARAASAASANA |
Wind speed < Improved 1) »| Analyst
if available a tg;gls;':if > water map >y correction
I T
[ ARAAAAAAAAAAAA. | Low .
£ Firstordery 1 resolution ',;,‘:.‘{3',":.,‘2’,,“
\, water map consilstelncy product
analysis
W

Figure 7-2, Water map generation algorithm.
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One of the important tests of the efficacy of this algorithm is to study images and check for
contiguity of water pixels. In other words, we should not have water bodies with many, isolated
non-water pixels in them. By the same token, we don't expect many isolated water pixels
surrounded by other (land) surface types. The contiguity test is best applied to test data from real
sensors. A data analyst can also use the contiguity test to adjust the threshold.

7.4 Error Budget

To be researched further. Clearly, ground-truth data are relatively easy to obtain for various size
and shape water bodies. Scenes with ground-truth measurements can then be compared to the
MTI retrieval.

7.5 Validation Plan

We can test this algorithm by using synthetic earth-surface imagery. For example, water bodies of
various shapes can be subjected to wind at several speeds and have varying levels of chlorophyll
concentration. MODTRAN is used to produce simulated top-of-the-atmosphere radiances. The
algorithm is then used to produce a water map, and a confusion matrix of assumed versus correct
atmospheres can be constructed. Furthermore, a single threshold would be applied and the
sensitivity with different wind speeds tested. Given that we often will not know the surface wind
speed for MTI images, we need to know the error induced by guessing this incorrectly.

Ground-truth measurements will be used at several sites to validate this algorithm. Ground-truth,
in this case, means high-resolution maps of specific water bodies. The water bodies should have
examples of asphalt, dense vegetation, and other ‘dark’ land types nearby, because these land types
are the most likely to mimic water. Data should be taken through the year to provide changes in
algae growth, turbidity, and water levels. The MTI 5 m pixels should be registered to the maps at
the ~0.3 pixel level. It is assumed that verified atmospheric corrections have already been applied
to the data.

7.6 Software Implementation Plan and Status
Implementation of this algorithm is straightforward, with the major input being the water-vapor

retrieval (and perhaps atmospheric corrections to band B). The larger question is validation, which
is discussed above.

7.7 Data Product

The water mask, Level 2-WM will be a simple bit mask with water pixels indicated with ‘1’ and
non-water pixels ‘0.
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MTI Science Algorithms

8. SUBPIXEL TEMPERATURE RETRIEVAL

John J. Szymanski and Pawel Smolarkiewicz

8.1 Introduction and Goals

The multispectral information available from MTI can, under certain conditions, be used to
measure more than one surface temperature in a single pixel. This information can be used in
water-only pixels to pick out the edges of a thermal plume or, potentially, to retrieve water
temperature for mixed land-water pixels. The latter is particularly useful for narrow water
channels, where a significant portion of the water surface is contained in mixed land-water pixels
(see Fig. 8-1).

8.2 Scientific Basis

Retrieving more than one temperature per pixel is a difficult task. Consider the general problem
of surface temperature retrieval. The radiance measured at the top of the atmosphere (TOA) in
MTI band i is

Ly, =€'BY(T )T i + LY, + LY, -zl | (8-1)

Surface am

where £ is the emissivity in MTI band i, B'is the Planck function averaged over band i, Tourface IS
the surface temperature (our goal), Tum is the atmospheric transmission in band i, and the last two
terms are the upwelling and reflected downwelling radiances in band i. The basic problem is that
we have N measurements (N = 5 for the MTI thermal IR (TIR) channels), but we have at least N+1

unknowns (the 5 £ emissivities and one temperature, Tsurface). This ignores the unknown upwelling
and downwelling radiances and the unknown atmospheric state. In the case of a water temperature
retrieval, we know the emissivities, and Tsurface can be robustly retrieved (see the sections on the
robust and physics-based water-temperature retrievals). Furthermore, in a mixed pixel we in
principle have 2(N+1) unknowns.

There are several additional pieces of information that we can use. For exampie, the nominal MTI
image acquisition involves two looks at each scene (nadir and 60°). Information from these two
looks can be used to eliminate some of the atmospheric effects. Also, day and night image
acquisition allows one to look at the same scene under different thermal conditions (well into the
night, the temperature contrast may reverse from its daytime bias, between materials with different
emissivities). We also have the advantage with MTI of pixels taken in the visual range that have a
4x smaller ground-sample distance (5 m). This can be used to identify mixed land-water pixels a
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priori. Thus, we can use the VNIR bands to measure the fractions of a mixed, 20 m GSD pixel
that are different surface types (e.g., define a land-water boundary, as in the Detecting Water
Bodies chapter).

Clearly this problem is difficult enough without considering more than two temperatures per pixel.
Two cases can be considered:

1. Retrieving two temperatures from a pixel containing two materials with substantially
different, but known, emissivities. The specific case of interest to MTI is a mixed land-
water pixel.

2. Retrieving two temperatures from a pixel with a single material at two different
temperatures (for example, a pixel that is homogenous in composition, but partially in
shadow, or a thermal plume in water).

It is argued below that the first case is the easiest to retrieve temperatures (although far from
‘easy’).

8.3 Algorithm Steps and Modeling

[EE | I ill":' L mix
S ] e 5|
| | Li' L,
Lan.
Tiey Tato

Figure 8-1. Pixels superimposed on a scene.
Note the several types of mixed-pixels in the
scene.

Figure 8-2. Definition of a mixed pixel.

Results

8.3.1 Retrieving temperatures from a mixed pixel

The top-of-the-atmosphere (TOA) radiance emitted by a mixed pixel in band i is (assuming the

independent-pixel approximation, i.e., no coupling between the subpixels, which is a very good
approximation in the TIR})

Lot =GB (T) + £,65B (T + Liy + Ly (')l (8-2)
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where ¥ is the reflectance of the mixed pixel, fi and f2 are the areal fractions of the pixel that are at
temperatures T1 and 72, respectively, 'r:m is the atmospheric transmission, the £’s are emissivities,

and the B’s are Planck functions (see Fig. 8-2). Reflected, downwelling radiance will be a small
effect for high-emissivity natural surfaces and will be ignored here. If the emissivities are known
and the fractions fi and f> can be determined from spatial cues in the visible or a priori knowledge
entered by a data analyst, then we are left with 8 unknowns (upwelling radiance, 5 atmospheric
transmissions and 2 temperatures) and the 5 TIR band measurements. Therefore, some
atmospheric model is needed. Upwelling radiance and atmospheric transmission can be
parameterized for the five TIR bands as a function of columnar water (CW) and effective
atmospheric temperature Ter(atm). A consistent set (i.e., a set that produces smooth temperature
values) of CW and T.g(atm) values can be produced using the physics-based temperature retrieval
method described elsewhere. The physics-based temperature retrieval would be applied over a set
of pixels that are believed to have a single, uniform temperature. Thus, if CW and T.«(atm) are
determined from an independent set of pixels, we are left with 5 measurements and 2 unknowns,
the two temperatures. Further atmospheric information from the MTI two-look manuever would
be used, if possible.

With the approximation outlined above, the measured radiance from a mixed pixel is
L. =(feB @)+ f,e,B' (T, (CW )+ BT Y1-7. (CW))- (8-3)

In this model T;m is a function of columnar water (CW) and the second term has been substituted

for the upwelling radiance. We use the CW and T.y(atm) values from the physics-based
temperature retrieval and define a new quantity

Ij duced — (LLW_B(T:‘% Xl‘ffm (CW%LM {cw) - («fleliBi (TI| )+ fzaéBi (TZ ))’ (8-4)

re

which can be fit for T, and T», given some knowledge of the emissivities and the fractions f; and
f2- Note that the fit is easier if the two emissivities are not equal, provided they are known because
there is more structure from band-to-band to separate the two terms in equation 8-4. The
algorithm outlined here is illustrated in Fig. 8-3. It may be useful to introduce the concept of
“virtnal cold” developed by Gillespie et al. (1990) to further aid in the unmixing,.
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Water Map Pixels for each
Material

Figure 8-3. Subpixel temperature retrieval algorithm.
8.3.2 Modeling results
A synthetic river scene was created with riverbank pixels that are partly land and partly water. No
atmospheric effects were included. The radiance from mixed pixels in the scene was modeled with

equation 8-4 and smearing due to the detector noise and calibration errors was added. No
emissivity or areal fraction errors were used. The retrieved rms water temperature error is ~2°K.
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In the next model, errors in our knowledge of the emissivities are included by retrieving the
temperature using the average emissivity of eight different soil types from the Salisbury (Salisbury
and D’Aria, 1992) database. The TOA radiance from each pixel is simulated by randomly
choosing among the eight soil types. The temperatures are retrieved using the average emissivity.
A 3% rms error is assumed in the areal fractions, which is based on the fact that the water map
will have 4x smaller GSD than the thermal bands and typically several of the smaller (5Sm) GSD
pixels will be mixed land-water pixels. The resulting water-temperature rms error is ~2.5°K.

8.3.3 Other situations

What can be done in the other situation, where a pixel contains a single material that is at two
different temperatures? Conceptually, one can consider extracting two temperatures in this
situation, although the task is considerably tougher than in the first situation. The govemning
hypothesis in this report is that the radiance produced in the 5 MTI thermal bands from two Planck
functions, Lmixea is distinguishable, within errors, from the radiance produced by a single Planck
function (i.e., the radiance that would be produced by a single-temperature pixel). If these two
situations can't be distinguished, then there is no chance of retrieving two separate temperatures.
The extent to which this hypothesis is fulfilled sets the limits of the method.

It is instructive to study the radiance as a function of wavelength for two situations: (1) a mixed
pixel whose radiance is described by two Planck functions at two temperatures and (2) a single
Planck function representing the radiance one expects if the pixel were pure. The temperature
used in the single Planck function is a straight average of the brightness temperatures in the 5 MTI
TIR bands. To further accentuate the differences between pure and mixed pixels, take these ratios

_ LY, - "L, @-5)
R-u.m' - Aﬂm R’m -_— LJ

Ultimately, the errors in Rpixcd must be smaller than the difference

R . (8-6)

p=|-

pure

For fi=f,=0.5, T, = 300K, and T, = 280K, Rmixea = 23.3, Rpure = 24.3, and D=4.4%.

Can D = 4.4% be detected with MTI? Assume the following SNRs for bands I - N, respectively:
200, 200, 500, 500, 500, and assume that the relative calibration of the MWIR and LWIR bands is
0.5%. In this case, the error on Rmixeg = 0.73%. Thus, a mixed pixel with two temperatures of 300
K and 280 K has an observable deviation from the radiances observed from a single Planck
function. Note that no explicit reference has been made to water, or even that the emissivities be
the same for the two subpixels, but it is assumed that the emissivities are known and uniform
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within the pixel. With an error on Rmixea 0f 0.73%, and assuming at least 2 standard deviations
from unity, a minimum temperature difference of 12K is observable (for fi = f2 = 0.5).

8.4 Error Budget

This is not a retrieval as much as an analysis package, requiring substantial user input. Clearly, a
few degree or smaller temperature error is desirable, but we may use this algorithm to set bounds
given certain input parameter ranges.

8.5 Validation Plan
Validation of this algorithm requires two types of scenes:

1. A scene containing an artificial water channel with water temperature measurments and
good knowledge of the relative locations of pixels and the edges of the channel (0.5 5 m
(VIS) pixels would be sufficient).

2. A lake shore scene, again with good registration and water-temperature measurements.

The H.R. Robinson power-plant complex in South Carolina has both of these attributes. Water
temperature measurements to 1°K are sufficiently accurate. Atmospheric water vapor profiles and
aerosol column densities are needed with moderate resolution (no better than are necessary for the
physics-based water-temperature retrieval). In addition, some characterization of the ground
emissivity (to 0.01-0.02, if possible) is needed.

Validation of the case where one material is at two temperatures is not considered here, because
the algorithm for dealing with this case is not well-developed.

8.6 Software Implementation Plan and Status

The existing algorithm has been written in IDL and operates on synthetic scenes. Application of
the algorithm to test data emulating the MTI bands will commence in the near future.

8.7 Data Products

The subpixel temperature retrieval is a level 4 product, requiring substantial user input, applied to
a limited, user-specified region of interest. The output of the subpixel analysis, Level 4-Subpix, is
a series of images of the region of interest specifying land temperatures, water temperatures,
chisquared distributions, etc. At present, the only situation that will be supported is mixed land-
water pixels with known emissivities and areal fractions.
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9. Power Estimates from Thermal Imagery

9. POWER ESTIMATES FROM THERMAL
IMAGERY ANALYSES

Alfred Garrett

9.1 Objective

The objective of this algorithm development effort is to use thermal imagery from a source such as
MTT to produce power estimates for nuclear reactors, fossil-fueled power plants and for other
industrial processes that discharge large amounts of waste heat to cooling lakes, rivers, estuaries or
the ocean.

9.2 Scientific Basis

Waste heat discharged to a body of water in the environment will ultimately be dissipated by the
combined effects of vertical and horizontal turbulent diffusion, transport by the mean flow,
evaporation, convective heat loss and radiative cooling. It is a fairly straightforward process to
simulate these heat dissipation processes with a 3-D hydrodynamic code that includes models that
describe the energy exchanges between water and air. A complete set of inputs to such a
simulation includes: meteorological data (wind speed and direction, air temperature, dewpoint
temperature, cloud cover and pressure), water depths, outfall and inlet temperatures, Julian day,
latitude, and in some cases tidal amplitudes and periods or river flow rates. Given these inputs,
simulations can be performed with different power plant cooling water flow rates until a best fit is
found between observed and simulated thermal images. If the hydrodynamic code plus the inputs
produce an accurate simulation of reality, the cooling water flow rate corresponding to the best fit
should be close to the actual flow rate. In most cases, cooling water inlet and outfall temperatures
for the power plant can be taken directly from the calibrated thermal image. Given the temperature
rise from inlet to outlet and the cooling water flow rate, the rate at which energy is being
discharged to the environment can be calculated from:

P=CFAT (9-1)

where P is power, C is a conversion constant, F is cooling water flow rate and AT is the
temperature rise from inlet to outlet. Eq. (1) gives only the part of the power being produced that is
discharged to the environment. If electrical power is being generated, the total power estimate
must account for the generating efficiency, which is usually about 33% for nuclear power plants
and about 38% for fossil-fueled power plants.
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9.3 Algorithm Steps

1. Gather data needed to create input files for simulations: meteorological data, bathymetric
data, cooling water inlet and outlet locations and if possible their depths, tidal amplitudes
and periods, river flow rates.

2. Create input files and computational grids.

3. Run series of simulations with varying flow rates.

4. Compare simulated thermal images to observed thermal images using subjective and
objective methods. Objective methods include standard statistical quantities such as
correlation coefficient, RMSE (root-mean-square error) and bias, but the primary measure
of agreement between observed and simulated thermal images is the Total Excess Energy
(TEE), defined by:

N
TEE = pc, >(T; - T, AxAyAz
=l (9-2)

In Eq. (9-2), Pis density of water, c, is specific heat of water, N is the number of nodes or
corresponding pixel values in the observed image, T;is the temperature at a computational

node or corresponding pixel value, T, is the ambient water temperature and AXAYAZ ope
nodal spacings in the horizontal and vertical directions. Typically, only 3 simulations are
needed to determine the cooling water flow rate which produces equal values of simulated
and observed TEE.

5. Compute power from Eq. (9-1), and adjust to account for electrical power generation, if
necessary.

9.4 Validation Plan

A 3-D hydrodynamic code (ALGE) with the characteristics described above was developed at the
Savannah River Technology Center (SRTC) and has been tested with data taken in a cooling lake
at the Savannah River Site (Garrett and Hayes, 1997). The ALGE code has also been verified with
cooling lake data from a large commercial nuclear power plant (Garrett, 1995a, 1996a, 1996b).
Additional verification work is now underway to determine the accuracy of power estimates
derived from simulations by ALGE of waste heat discharged to the ocean by another commercial
nuclear power plant. The work at the commercial nuclear sites is funded by other programs.

The initial verification work described above made use of thermal imagery from remote sensing
systems that required ground truth data to calibrate the imagery. Garrett (1995b) showed that
biases in the calibration of thermal imagery can produce large errors in the power estimates. A key
part of ALGE verification for MTI will be assessment of the accuracy of the ALGE's power
predictions using imagery calibrated with MTT's thermnal retrieval algorithms, not ground truth.

The water temperature that MTI and all other remote sensors measure is the “skin” temperature,
which is the temperature of the uppermost millimeter of water. The skin temperature is typically
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cooler than the bulk water temperature just below, because evaporative cooling removes heat from
warm water faster than it can be replaced from below by thermal conductivity and diffusion.
Evaporative cooling models such as those used by the ALGE code make use of empirical
correlations based on bulk water temperature measurements, not skin temperatures. After MTI is
launched, it will image on a continuous basis a power plant that discharges heated water to a
cooling lake and a power plant that discharges to an estuary or river. The ground truth data
collected at these sites will include both skin and bulk water temperatures. These data will be used
to determine if existing methods to correct for skin-bulk water temperature differences are
adequate (Schluessel et al, 1990).

The MTTI verification data base for the ALGE code should contain at least 25 images taken over at
least one year for each of the two power plant sites, along with collateral data such as meteorology.
SRTC will use these data to determine the accuracy of ALGE’s power estimates based on MTT’s
temperature retrieval algorithm, including corrections for differences between skin and bulk water
temperatures.

9.5 Status

As stated above, SRTC has developed the ALGE code and some verification work has already
been done. That verification work is continuing. SRTC is now selecting candidate power plants to
be regularly imaged by MTL SRTC is also determining what instrumentation will be needed for
ground truth measurements at these sites.
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10. ESTIMATION OF COOLING TOWER POWER

Lance O’Steen

10.1 Objective

The objective of this project is the development of a procedure utilizing MTI visible and IR imagery
of cooling tower plumes, in conjunction with high-resolution, 3-D plume simulations, to estimate
cooling tower power, and hence the operating power of the facility serviced by the cooling tower.

10.2 Scientific Basis

Power generating facilities must expel to the environment a certain percentage of their total energy
production as waste heat. This is normally accomplished by the direct discharge of hot process water
to a nearby body of water or by thermal exchange of the hot water stream with the atmosphere
utilizing a cooling tower. Heat transfer in a cooling tower occurs by convection, due to a
temperature difference between the water and air, and by latent heat effects, as water evaporates into
the ambient air stream. Latent heat typically represents 80% of the total heat exchange in a cooling
tower. Thus, a cooling tower operation often produces a cloud water plume, and the amount of
water vapor available for condensation is largely determined by the operating power of the tower. A
cloud water plume is a good scatterer of solar radiation and a strong infrared emitter. Thus both
visible and IR imagery can potentially be used to obtain information on plume geometry and cloud
properties related to radiative transfer within the plume. In principle, this information can be
compared with plume simulation results to yield a power estimate. A schematic of a typical cooling
tower operation is shown in Figure 10-1.

The operating power of a cooling tower is given by,

P =G (How - Hiy) (10-1)

where: G = mass flow rate from the tower
H;, = enthalpy of the ambient air entering the bottom of the tower

Hgy = enthalpy of the air exiting the top of the tower
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The enthalpy terms in the above equation are dependent on the temperature and humidity of the
associated air streams. The tower exit stream for a visible plume is saturated, and thus is a function
of temperature only. If the ambient air temperature and humidity near the ground can be determined
(tower inlet), then the cooling tower power is a function of exit flow rate and temperature. With
sufficient spatial resolution it might be possible to directly measure the tower exit temperature from
IR imagery. Unfortunately, MT1 does not have sufficient resolution for this measurement. 1In any
case, the flow rate would remain an unknown. Another approach is to compare imagery of the entire
plume with simulations of the plume and attempt to iteratively (varying exit temperature and
velocity) determine the power level. Actual plume geometry can be examined with either visible or
IR imagery through MTI’s duat look capability, while the spatial distribution of the above plume
properties allows the calculation of IR emission and transfer within the plume (scattering can be
included if necessary) for direct comparison with MTI imagery

et U Exit Plume Temp
~*—__and Flow Rate (G)

Hot Water (saturated)
: from Condenser
el Ambient
POWER . Surface Air
| GENERATIO at TempTa
b ity and Humidity 'y

i Cold Water \>

from Cooling Tower

Figure 10-1: Schematic of typical cooling tower operation.
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Any type of plume simulation will require as input: (1) the tower exit temperature and velocity, and
(2) ambient temperature, humidity and wind from the ground to the top of the plume. Simulation
output should include realistic plume geometry and the spatial distribution of cloud water,
temperature and drop size within the plume. This will necessitate the use of a high resolution, 3-D
plume simulation. The Regional Atmospheric Modeling System (RAMS) developed at Colorado
State (Pielke, et al., 1992) is used for this simulation task. RAMS is a 3-D, nonhydrostatic
boundary-layer model developed primarily for simulating mesoscale circulations. However, RAMS
has been used for large-eddy simulations (Walko, et al., 1992) and high-resolution flow around
simple structures (Nichols, et al., 1993). Plume simulations generated with RAMS indicate that total
cloud water volume is a strong function of power, with AV/AP ranging from 1400 to 2700 m*/MW
for fixed ambient meteorology (O’Steen, 1996). A typical power for these simulations was 2400
MW, with a plume volume of 2.6 x 10° m®. In the same simulations, variations in plume volume
due to turbulent motions were found to be relatively small with 6,/V <0.1. Simulation studies were
also performed to determine the sensitivity of plume volume to variations in ambient temperature
and humidity at constant power, since errors in the estimation of ambient meteorology are
inevitable. Simulation results suggest that AV/AT and AV/Aq are about 0.3 x 10° m*K and 1.3 x
10% m%/g/kg, when the ambient temperature (T) and specific humidity (q) are relatively constant
over the height of the plume. Nominal values of ambient temperature and humidity were 287 K and
4.9 g/kg for these meteorological sensitivity studies. In Figure 10-2, cloud water volume versus
tower power is plotted for a simulation with fixed meteorology. Two additional points are plotted
for which the ambient, plume-level temperature and specific humidity were perturbed. For the high
humidity simulation, the specific humidity was increased from 4.9 to 5.1 g/kg; the temperature was
lowered 3 K for the low temperature simulation,
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Figure 10-2: Cloud water volume versus tower power for a simulation with fixed
meteorology.

Thus typical errors in the thermodynamic structure of the atmosphere cannot be ignored when
estimating power from measurements of plume volume. In the simulations to date, the boundary-
layer atmospheric model used to generate the cooling tower plume (RAMS) was also used to
genecrate the ambient meteorology. This is done at a resolution sufficient to capture any local
surface induced effects (e.g. drainage flows), with the model initiated at least 12 hours prior to the
tower simulation. Large-scale model results, sounding data and surface data are all used to initialize
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the boundary-layer model. In addition, MTI-derived air temperatures, from ground vegetation and
tree top foliage, can be assimilated into the boundary-layer simulation and used directly in the power
calculation. MTI water vapor column information might also provide a check on the simulation
results. In areas of complex terrain and limited data, the use of a mesoscale model can be essential
in obtaining accurate meteorology (Fast and O’Steen, 1992). If errors in the ambient meteorology
are not significantly biased, then a set of collections/simulations should be able to eliminate most of
the power estimation error due to errors in meteorology.

As discussed above, for a given meteorological profile, the plume volume and cooling tower power
are functions of tower exit velocity and temperature. However, these functional relationships are
not the same, and therefore the tower velocities and temperatures which produce a specific plume
volume do not generally correspond to a constant power level. Fortunately, tower design velocities
for both forced (8 to 12 m/s) and natural draft towers (3 to 6 m/s) do not vary widely, thus this
power error should be less than 25%. Plume radiance calculations in the IR might be able to narrow
this error even further. A two-stream radiative transfer code based on Mie theory has been
developed for this calculation.

10.3 Computational Algorithm for Cooling Tower Power Estimation

To minimize meteorological errors in the power estimate, the following steps should be performed
for a series of collections:

(1) Estimate a vertical profile for ambient meteorology using a boundary-layer model and all
available model data (large scale), upper air data, surface data, and MTI derived data. Use
comparison of model results with observations in the region to determine if significant bias
exits in the model predictions.

(2) Calculate plume volume from MTI imagery at two view angles. Also use solar plume
shadow to provide a third “view angle” for volume estimation if visible imagery is being
utilized.

(3) Use data from (1) and specified values of tower exit velocity and temperature to simulate
cloud water plumes. Determine values of velocity and temperature which produce observed
plume volume for a reasonable range in tower velocity.

(4) Calculate the cooling tower power for the velocities and temperatures found in (3).

(5) If IR imagery is being utilized, calculate plume radiance and compare with imagery. Use this
information to narrow the power range found in (4).

10.4 Verification of Power Estimation Algorithm

The power estimation procedure outlined above will initially be verified through a series of ground-
based field studies of a pair of large natural draft cooling towers at the Plant Vogtle generating
station near Augusta, Georgia. The cloud water plumes will be photographed (both visible and IR)
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from several different angles and the volume estimated from the images. The algorithm for this
volume estimation has been developed and tested. Daily operating power for the towers will be
provided by Vogtle personnel. Ambient meteorological data will be collected from nearby towers
operated by the DOE’s Savannah River Site. One of these towers provides wind and temperature
information to a height of 300 meters; tower height is 175 m. Humidity is available to 60 meters. It
is also anticipated that upper air data will be available during the collections from airsonde launches
at the Savannah River Site. After MTI is launched, Vogtle will be the primary candidate for space-
based verification studies, although an alternate site is possible. The space-based verification will
be similar to the ground studies, with intensive meteorological data collection during fly-overs and
simultaneous ground-based imagery collection. In addition, cooling tower exit temperature and
velocity will be continuously monitored. It is also anticipated that cloud water content and drop size
will be measured to provide a more direct verification of the plume simulation.

10.5 Project Status

Code development for the ground-based verification project is complete and ground based
verification studies will begin in early 1998. Further code development and testing will be required
for volume estimation based on MTI imagery. Additional radiation code development will also be
required to include plume-to-satellite radiative transfer (atmospheric effects).
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11. CLOUD MASKS

Anthony B. Davis

11.1 Introduction and Goal

Clouds are defined in this report —on purely optical grounds— as highly reflective/emissive
regions in the atmosphere and ——apart from the occasional dust storm, forest fire, or volcanic
eruption— this definition translates directly into the usuval definition of a cloud as a concentration
of liquid-water droplets and/or ice crystals. These are indeed the scattering particles that produce
the phenomenon of “cloud” readily observable to the naked-eye. Clouds can form anywhere from
the ground (a dense fog) to the upper troposphere (cirrus) with horizontal extensions ranging from
tens of meters (“puffs”) to thousands of km (marine stratocumulus decks). Even under this
slightly restrictive optical definition, clouds are a frequent occurrence: likely 1/4 to 1/3 of the
Earth is shrouded in cloud at any given time. The climatological number for cloud-cover is
somewhat larger but includes cases optically thinner than we care to consider here.

Under the not-too-grazing-incidence-or-viewing conditions that apply generically to MTI scenes,
“highly reflective/emissive™ invariably means “optically thick;” some authors extend the notion of
“cloud” to optically thin layers such as sub-visible cirrus, which we treat in another report (Section
12 on Thin Cirrus Detection/Removal). The implicit assumption here is that any occurrence of
liquid or solid H,O in the atmosphere defines a cloud. It must be emphasized that such semi- to
quasi-transparent ‘“clouds” are, for all practical purposes, comparable to aerosol layers in the
remote-sensing context. Both aerosol, a boundary-layer phenomenon, and optically thin “clouds,”
typically high-altitude cirrus, are atmospheric perturbations of a remotely-sensed signal otherwise
dominated by surface features and, as such, should be corrected for {cf. Sections. 12 & 13).

The goal of the algorithm described in this report is to detect the presence of clouds in an MTI
scene and, if necessary, separate them from “clear sky” portions of the scene. Thus defining a
cloud “mask,” a product that informs us about how clear the sky is between satellite and ground
for a given pixel. In the MODIS cloud mask [Wharton and Myers, 1997], a “degree” or
“probability” of cloudiness is assigned to each pixel, cf. Fig. 2. Because of the much higher spatial
resolution of MTI (5-20 m vs. 0.25-1.0 km for MODIS), this will not be necessary: a pixel is
cloudy or not.

It must be realized however that clouds affect the measured pixel value even if they do not occur
along the direct line-of-sight, especially in VIS/NIR channels. First, pixels can have measurable
radiances —although lower than “normal”— coming from surface points that are in the
geometrical shadow of a cloud. This is witness to the fact that there is a diffuse as well as a direct
component to local surface irradiance. As diffuse reflectors, isolated clouds can “channel” or
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